A glioma is a type of tumor that starts in the brain or spine. It is called a glioma because it arises from glial cells. The most common site of gliomas is the brain.


Gliomas are classified by cell type, by grade, and by location.

By type of cell

Gliomas are named according to the specific type of cell they share histological features with, but not necessarily originate from. The main types of gliomas are:

By grade

Gliomas are further categorized according to their grade, which is determined by pathologic evaluation of the tumor.
  • Low-grade gliomas [WHO grade II] are well-differentiated (not anaplastic); these are not benign but still portend a better prognosis for the patient.
  • High-grade [WHO grade III-IV] gliomas are undifferentiated or anaplastic; these are malignant and carry a worse prognosis.
Of numerous grading systems in use, the most common is the World Health Organization (WHO) grading system for astrocytoma, under which tumors are graded from I (least advanced disease — best prognosis) to IV (most advanced disease — worst prognosis).

By location

Gliomas can be classified according to whether they are above or below a membrane in the brain called the tentorium. The tentorium separates the cerebrum (above) from the cerebellum (below).
  • supratentorial: above the tentorium, in the cerebrum, mostly found in adults (70%).
  • infratentorial: below the tentorium, in the cerebellum, mostly found in children (70%).
  • pontine: located in the pons of the brainstem. The brainstem has three parts (pons, midbrain and medulla); the pons controls critical functions such as breathing, making surgery on these extremely dangerous.

Signs and symptoms

Symptoms of gliomas depend on which part of the central nervous system is affected. A brain glioma can cause headaches, nausea and vomiting, seizures, and cranial nerve disorders as a result of increased intracranial pressure. A glioma of the optic nerve can cause visual loss. Spinal cord gliomas can cause pain, weakness, or numbness in the extremities. Gliomas do not metastasize by the bloodstream, but they can spread via the cerebrospinal fluid and cause "drop metastases" to the spinal cord.
A child who has a subacute disorder of the central nervous system that produces cranial nerve abnormalities (especially of cranial nerve VII and the lower bulbar nerves), long-tract signs, unsteady gait secondary to spasticity, and some behavioral changes is most likely to have a pontine glioma.


The exact causes of gliomas are not known. Hereditary genetic disorders such as neurofibromatoses (type 1 and type 2) and tuberous sclerosis complex are known to predispose to their development.
Gliomas have been correlated to the electromagnetic radiation from cell phones, and a link between the cancer and cell phone usage is considered plausible, though there is no conclusive evidence. Most glioblastomas are infected with cytomegalovirus, however the significance of this is not known.


High-grade gliomas are highly-vascular tumors and have a tendency to infiltrate. They have extensive areas of necrosis and hypoxia. Often tumor growth causes a breakdown of the blood–brain barrier in the vicinity of the tumor. As a rule, high-grade gliomas almost always grow back even after complete surgical excision, and so are commonly called recurrent cancer of the brain.
On the other hand, low-grade gliomas grow slowly, often over many years, and can be followed without treatment unless they grow and cause symptoms.


Gliomas are rarely curable. The prognosis for patients with high-grade gliomas is generally poor, and is especially so for older patients. Of 10,000 Americans diagnosed each year with malignant gliomas, about half are alive 1 year after diagnosis, and 25% after two years. Those with anaplastic astrocytoma survive about three years. Glioblastoma multiforme has a worse prognosis with less than a 12-month average survival after diagnosis, though this has extended to 14 months with more recent treatments .

Low Grade Glioma

For low-grade tumors, the prognosis is somewhat more optimistic. Patients diagnosed with a low-grade glioma are 17 times as likely to die as matched patients in the general population. The age-standardized 10-year relative survival rate was 47%. One study reported that low-grade oligodendroglioma patients have a median survival of 11.6 years; another reported a median survival of 16.7 years

High Grade Glioma

This group comprises anaplastic astrocytomas and glioblastoma multiforme.


Treatment for brain gliomas depends on the location, the cell type and the grade of malignancy. Often, treatment is a combined approach, using surgery, radiation therapy, and chemotherapy. The radiation therapy is in the form of external beam radiation or the stereotactic approach using radiosurgery. Spinal cord tumors can be treated by surgery and radiation. Temozolomide is a chemotherapeutic drug that is able to cross the blood–brain barrier effectively and is currently being used in therapy for high-grade tumors.

Source: Wikipedia

Gestational trophoblastic disease (GTD) is a term used for a group of pregnancy-related tumours.
These tumours are rare, and they appear when cells in the womb start to grow out of control. The cells that form gestational trophoblastic tumours are called trophoblasts and come from tissue that grows to form the placenta during pregnancy.


GTD is the common name for five closely related tumours (one benign tumour, and four malignant tumours):[6]
Here, first a fertilised egg implants into the uterus, but some cells around the fetus (the chorionic villi) do not develop properly. The pregnancy is not viable, and the normal pregnancy process turns into a benign tumour. There are two subtypes of hydatidiform mole: complete hydatidiform mole, and partial hydatidiform mole.
All five closely related tumours develop in the placenta. All five tumours arise from trophoblastic cells. The trophoblast is the membrane that forms the wall of the blastocyst in the early development of the fetus. In a normal pregnancy, trophoblastic cells aid the implantation of the fertilised egg into the uterine wall. But in GTD, they develop into tumour cells.


Overall, GTD is a rare disease. The reported incidence of hydatidiform mole ranges from 23 to 1299 cases per 100,000 pregnancies. The incidence of the malignant forms of GTD is much lower, only about 10% of the incidence of hydatidiform mole.

Risk Factors

Two main risk factors increase the likelihood for the development of GTD: 1) The woman being under 20 years of age, or over 35 years of age, and 2) previous GTD.
Although molar pregnancies affect women of all ages, women under 16 years of age have a six times higher risk of developing a molar pregnancy than those aged 16–40 years, and women 50 years of age or older have a one in three chance of having a molar pregnancy.
Being from Asia/of Asian ethnicity is an important risk factor.
The ABO blood groups of the parents appear to be a factor in choriocarcinoma development, i.e. women with blood group A have been shown to have a greater risk than blood group O women.


Cases of GTD can be diagnosed through routine tests given during pregnancy, such as blood tests and ultrasound, or through tests done after miscarriage or abortion. Vaginal bleeding, enlarged uterus, pelvic pain or discomfort, and vomiting too much (hyperemesis) are the commonest symptoms of GTD. But GTD also always leads to elevated serum hCG (human chorionic gonadotropin hormone). Since pregnancy is by far the commonest cause of elevated serum hCG, clinicians generally first suspect a pregnancy with a complication. However, in GTD, the beta subunit of hCG (beta hCG) is also always elevated. Therefore, if GTD is clinically suspected, serum beta hCG is also measured.
However, malignant GTD is highly vascular. If malignant GTD is suspected clinically, biopsy is contraindicated, because biopsy may cause life threatening haemorrhage.


Treatment is always necessary.
The treatment for hydatidiform mole consists of the evacuation of pregnancy. Evacuation will lead to the relief of symptoms, and also prevent later complications. Suction curettage is the preferred method of evacuation. Hysterectomy is an alternative if no further pregnancies are wished for by the female patient. Hydatidiform mole also has successfully been treated with systemic (intravenous) methotrexate.
The treatment for invasive mole or choriocarcinoma generally is the same. Both are usually treated with chemotherapy. Methotrexate and dactinomycin are among the chemotherapy drugs used in GTD. Only a few women with GTD suffer from poor prognosis metastatic gestational trophoblastic disease. Their treatment usually includes chemotherapy. Radiotherapy can also be given to places where the cancer has spread, e.g. the brain.
Women who undergo chemotherapy are advised not to conceive for one year after completion of treatment. These women also are likely to have an earlier menopause. It has been estimated by the Royal College of Obstetricians and Gynaecologists that the age at menopause for women who receive single agent chemotherapy is advanced by 1 year, and by 3 years for women who receive multi agent chemotherapy.

Follow up

Follow up is necessary in all women with gestational trophoblastic disease, because of the possibility of persistent disease, or because of the risk of developing malignant uterine invasion or malignant metastatic disease even after treatment in some women with certain risk factors.
The use of a reliable contraception method is very important during the entire follow up period, because the follow-up depends on measuring hCG. If a reliable contraception method is not used during the follow-up, there can be great confusion if hCG rises: Why did it rise? Because the patient became pregnant again? Or because the gestational trophoblastic disease is still present? Therefore, during the prescribed follow up period, the patients must not become pregnant.
In women who have a malignant form of GTD, hCG concentrations stay the same (plateau) or they rise. Persistent elevation of serum hCG levels after a non molar pregnancy (i.e., normal pregnancy [term pregnancy], or preterm pregnancy, or ectopic pregnancy [pregnancy taking place in the wrong place, usually in the fallopian tube], or abortion) always indicate persistent GTD (very frequently due to choriocarcinoma or placental site trophoblastic tumour), but this is not common, because treatment mostly is successful.
In rare cases, a previous GTD may be reactivated after a subsequent pregnancy, even after several years. Therefore, the hCG tests should be performed also after any subsequent pregnancy in all women who had had a previous GTD (6 and 10 weeks after the end of any subsequent pregnancy).

Which other women should also undergo hCG testing

Women with persistent abnormal vaginal bleeding after any pregnancy, and women developing acute respiratory or neurological symptoms after any pregnancy, should also undergo hCG testing, because these may be signs of a hitherto undiagnosed GTD.

Prognosis and staging

Women with a hydatidiform mole have an excellent prognosis.
Also women with a malignant form of GTD usually have a very good prognosis.

Choriocarcinoma, for example, is an uncommon, yet almost always curable cancer. Although choriocarcinoma is a highly malignant tumour and a life threatening disease, it is very sensitive to chemotherapy. Virtually all women with non-metastatic disease are cured and retain their fertility; the prognosis is also very good for those with metastatic (spreading) cancer, in the early stages, but fertility may be lost. Hysterectomy (surgical removal of the uterus) can also be offered to patients > 40 years of age or those for whom sterilisation is not an obstacle. Only a few women with GTD have a poor prognosis, e.g. some forms of stage IV GTN. The FIGO staging system is used. The risk can be estimated by scoring systems such as the Modified WHO Prognostic Scoring System, wherein scores between 1 and 4 from various parameters are summed together:
Modified WHO Prognostic Scoring System

Antecedent pregnancy
Interval months from index pregnancy
Pretreatment serum hCG (IU/L)
Largest tumor size (including uterus)
3–4 cm
≥5 cm
Site of metastases
spleen, kidney
liver, brain
Number of metastases
Previous failed chemotherapy
single drug
≥2 drugs
In this scoring system, women with a score of 7 or greater are considered at high risk.

Becoming pregnant again

Most women with GTD can become pregnant again and can have children again. The risk of a further molar pregnancy is low. More than 98% of women who become pregnant following a molar pregnancy will not have a further hydatidiform mole or be at increased risk of complications.
In the past, it was seen as important not to get pregnant straight away after a GTD. Specialists recommended a waiting period of 6 months after the hCG levels become normal. Recently, this standpoint has been questioned. New medical data suggest that a significantly shorter waiting period after the hCG levels become normal is reasonable for approximately 97% of the patients with hydatidiform mole.

Risk of a repeat GTD

The risk of a repeat GTD is approximately 1 in 100, compared with approximately 1 in 1000 risk in the general population. Especially women whose hCG levels remain significantly elevated are at risk of developing a repeat GTD.

Persistent trophoblastic disease

The term «persistent trophoblastic disease» (PTD) is used when after treatment of a molar pregnancy, some molar tissue is left behind and again starts growing into a tumour. Although PTD can spread within the body like a malignant cancer, the overall cure rate is nearly 100%.
In the vast majority of patients, treatment of PTD consist of chemotherapy. Only about 10% of patients with PTD can be treated successfully with a second curettage.


Hydatidiform moles are abnormal conceptions with excessive placental development. Conception takes place, but placental tissue grows very fast, rather than supporting the growth of a fetus.
Complete hydatidiform moles have no fetal tissue and no maternal DNA. A single sperm duplicates and this duplicated sperm fertilises an empty ovum, or, two sperms fertilise an empty ovum (dispermic fertilisation). An empty ovum is a maternal egg which has no functional maternal DNA.
Partial hydatidiform moles have a fetus or fetal cells. They are triploid in origin, i.e. one set of maternal haploid genes and two sets of paternal haploid genes. They almost always occur following dispermic fertilisation of a normal ovum (fertilisation of one egg by two sperm).
Malignant forms of GTD are very rare. About 50% of malignant forms of GTD develop from a hydatidiform mole.

Source: Wikipedia

A gastrointestinal stromal tumor (GIST) is one of the most common mesenchymal tumors of the gastrointestinal tract (1-3% of all gastrointestinal malignancies).
They are typically defined as tumors whose behavior is driven by mutations in the Kit gene or PDGFRA gene, and may or may not stain positively for Kit.

Signs and symptoms

Patients present with trouble swallowing, gastrointestinal hemorrhage or metastases (mainly in the liver). Intestinal obstruction is rare, due to the tumor's outward pattern of growth. Often, there is a history of vague abdominal pain or discomfort, and the tumor has become rather large by time the diagnosis is made.
Generally, the definitive diagnosis is made with a biopsy, which can be obtained endoscopically, percutaneously with CT or ultrasound guidance or at the time of surgery.


As part of the analysis, blood tests and CT scanning are often undertaken (see the radiology section).
A biopsy sample will be investigated under the microscope. The histopathologist identifies the characteristics of GISTs (spindle cells in 70-80%, epitheloid aspect in 20-30%). Smaller tumors can usually be found to the muscularis propria layer of the intestinal wall. Large ones grow, mainly outward, from the bowel wall until the point where they outstrip their blood supply and necrose (die) on the inside, forming a cavity that may eventually come to communicate with the bowel lumen.
When GIST is suspected—as opposed to other causes for similar tumors—the pathologist can use immunohistochemistry (specific antibodies that stain the molecule CD117 (also known as c-kit) —see below). 95% of all GISTs are CD117-positive (other possible markers include CD34, DOG-1, desmin, and vimentin). Other cells that show CD117 positivity are mast cells.
If the CD117 stain is negative and suspicion remains that the tumor is a GIST, the newer antibody DOG-1 (Discovered On GIST-1) can be used. Also sequencing of Kit and PDGFRA can be used to prove the diagnosis.


The purpose of radiologic imaging is to locate the lesion, evaluate for signs of invasion and detect metastasis. Features of GIST vary depending on tumor size and organ of origin. The diameter can range from a few millimeters to more than 30 cm. Larger tumors usually cause symptoms in contrast to those found incidentally which tend to be smaller and have better prognosis.

Small GISTs

Since GISTs arise from the bowel layer called muscularis propria (which is deeper to the mucosa and submucosa from a luminal perspective), small GIST imaging usually suggest a submucosal process or a mass within the bowel wall. In barium swallow studies, these GIST most commonly present with smooth borders forming right or obtuse angles with the nearby bowel wall, as seen with any other intramural mass. The mucosal surface is usually intact except for areas of ulceration, which are generally present in 50% of GISTs. Ulcerations fill with barium causing a bull’s eye or target lesion appearance. In contrast-enhanced CT, small GISTs are seen as smooth, sharply defined intramural masses with homogeneous attenuation.

Large GISTs

As the tumor grows it may project outside the bowel (exophytic growth) and/or inside the bowel (intraluminal growth), but they most commonly grow exophytically such that the bulk of the tumor projects into the abdominal cavity. If the tumor outstrips its blood supply, it can necrose internally, creating a central fluid-filled cavity with hemorrhage and cavitations that can eventually ulcerate and communicate into the lumen of the bowel. In that case, barium swallow may show an air, air-fluid levels or oral contrast media accumulation within these areas. Mucosal ulcerations may also be present. In contrast enhanced CT images, large GISTs appear as heterogeneous masses due to areas of living tumor cells surrounding hemorrhage, necrosis or cysts, which is radiographically seen as a peripheral enhancement pattern with a low attenuation center. In MRI studies, the degree of necrosis and hemorrhage affects the signal intensity pattern. Areas of hemorrhage within the tumor will vary its signal intensity depending on how long ago the hemorrhage occurred. The solid portions of the tumor are typically low signal intensity on T1-weighted images, are high signal intensity on T2-weighted images and enhance after administration of gadolinium. Signal-intensity voids are present if there is gas within areas of necrotic tumor.

Features of malignancy

Most GISTs (70-80%) are benign. Malignancy is characterized by local invasion and metastases, usually to the liver, omentum and peritoneum. However, cases of metastases to bone, pleura, lungs and retroperitoneum have been seen. In distinction to gastric adenocarcinoma or gastric/small bowel lymphoma, malignant lymphadenopathy (swollen lymph nodes) is uncommon (<10%) and thus imaging usually shows absence of lymph node enlargement. Unless metastatic disease or tumor invasion of adjacent structures is seen, the distinction between benign and malignant GISTs cannot be made with radiologic examination. If metastases are not present, other radiologic features suggesting malignancy include: size (>5 cm), heterogeneous enhancement after contrast administration and ulcerations. Also, malignant behavior is rarely seen in gastric tumors, with a ratio of benign to malignant 3-5:1. Even if radiographic malignant features are present, these findings may also represent other tumors and definitive diagnosis must be made immunochemically.

Comparison among imaging modalities

Barium fluoroscopic examinations and CT are commonly used to evaluate the patient with abdominal complaints. Barium swallow images show abnormalities in 80% of GIST cases. However, some GISTs may be located entirely outside the lumen of the bowel and will not be appreciated with a barium swallow. Even in cases when the barium swallow is abnormal, an MRI or CT scan must follow since it is impossible to evaluate abdominal cavities and other abdominal organs with a barium swallow alone. In a CT scan, abnormalities may be seen in 87% of patients and it should be made with both oral and intravenous contrast. Among imaging studies, MRI has the best tissue contrast, which aids in the identification of masses within the GI tract (intramural masses). Intravenous contrast material is needed to evaluate lesion vascularity.
Plain radiographs are not very helpful in the evaluation of GISTs. If an abnormality is seen, it will be an indirect sign due to the tumor mass effect on adjacent organs. On abdominal x-ray, stomach GISTs may appear as a radiopaque mass altering the shape of the gastric air shadow. Intestinal GISTs may displace loops of bowel and larger tumors may obstruct the bowel and films will show an obstructive pattern. If cavitations are present, plain radiographs will show collections of air within the tumor. Calcification is an unusual feature of GIST but if present can be visible on plain films.
Preferred imaging modalities in the evaluation of GISTs are CT and MRI. CT advantages include its ability to demonstrate evidence of nearby organ invasion, ascites and metastases. The ability of MRI to produce images in multiple planes is helpful in determining the bowel as the organ of origin (which is difficult when the tumor is very large), facilitating diagnosis.


GISTs are tumors of connective tissue, i.e. sarcomas; unlike most gastrointestinal tumors, they are nonepithelial. About 70% occur in the stomach, 20% in the small intestine and less than 10% in the esophagus. Small tumors are generally benign, especially when cell division rate is slow, but large tumors disseminate to the liver, omentum and peritoneal cavity. They rarely occur in other abdominal organs.
Some tumors of the stomach and small bowel, referred to as leiomyosarcomas (malignant tumor of smooth muscle), would most likely be reclassified as GISTs today on the basis of immunohistochemical staining.
GISTs are thought to arise from interstitial cells of Cajal (ICC), that are normally part of the autonomic nervous system of the intestine. They serve a pacemaker function in controlling motility.
Most (50-80%) GISTs arise because of a mutation in a gene called c-kit. This gene encodes a transmembrane receptor for a growth factor termed stem cell factor (scf). The c-kit product/CD117 is expressed on ICCs and a large number of other cells, mainly bone marrow cells, mast cells, melanocytes and several others. In the gut, however, a mass staining positive for CD117 is likely to be a GIST, arising from ICC cells.
The c-kit molecule comprises a long extracellular domain, a transmembrane segment, and an intracellular part. Mutations generally occur in the DNA encoding the intracellular part (exon 11), which acts as a tyrosine kinase to activate other enzymes. Mutations make c-kit function independent of activation by scf, leading to a high cell division rate and possibly genomic instability. Additional mutations are likely "required" for a cell with a c-kit mutation to develop into a GIST, but the c-kit mutation is probably the first step of this process.


Although some families with hereditary GISTs have been described, most cases are sporadic.
In GIST cells, the c-kit gene is mutated approximately 85% to 90% of the time. 35% of the GIST cells with wildtype (i.e. not mutated) c-kit instead have a mutation in another gene, PDGFR-α (platelet derived growth factor receptor alpha), which is a related tyrosine kinase.
Mutations in the exons 11, 9 and rarely 13 and 17 of the c-kit gene are known to occur in GIST. D816V point mutations in c-kit exon 17 are responsible for resistance to targeted therapy drugs like imatinib mesylate, a tyrosine kinase inhibitor. Mutations in c-kit and PDGFrA are mutually exclusive.


Tumor size, mitotic rate, and location can be used to predict the risk of recurrence in GIST patients. Tumors <2 cm with a mitotic rate of <5/50 HPF have been shown to have lower risk of recurrence than larger or more aggressive tumors. Nevertheless, all GIST tumors should be considered to have malignant potential and no GIST tumor can be correctly classified as "benign."
Surgery is the mainstay of therapy for nonmetastatic GISTs. Lymph node metastases are rare, and routine removal of lymph nodes is typically not necessary. Laparoscopic surgery, a minimally invasive abdominal surgery using telescopes and specialized instruments, has been shown to be effective for removal of these tumors without needing large incisions.
Until recently, GISTs were notorious for being resistant to chemotherapy, with a success rate of <5%. Recently, the c-kit tyrosine kinase inhibitor imatinib (Glivec/Gleevec), a drug initially marketed for chronic myelogenous leukemia, was found to be useful in treating GISTs, leading to a 40-70% response rate in metastatic or inoperable cases.
The two year survival of patients with advanced disease has risen to 75–80% following imatinib treatment.
Data presented at the 2007 ASCO meeting showed adjuvant treatment with imatinib following surgical resection of GIST tumors can significantly reduce the risk of disease recurrence (6% recurrence on imatinib vs. 17% without therapy at 12 months). The optimal duration of adjuvant therapy is currently unknown; trials are ongoing evaluating treatment durations of 1, 2, and 3 years.
Patients who develop resistance to imatinib may respond to the multiple tyrosine kinase inhibitor sunitinib (marketed as Sutent).
The effectiveness of imatinib and sunitinib depend on the genotype.

Source: Wikipedia

Next Page →